
[ READ I.NsTrRUCTIO*i,SREPORT DOCUMENTATION PAGE RE CORPLETIN FORM

q*Nu-BEQ2 GOVI ACCESSION NO 3 PECIrI1NT'S CATAL ! NUMBER

AIM 1178 1TC , ,
4 TITLE f.nd S..bf'rI@J 5 T VP EKskw tT,6 % 10

Computational Consequences of Agreement and memorandum

Ambiguity in Natural Language PERFOmING ORG. REPORT NUMUBER

I JTMON (,) 5. CONTRACT OR GRANT NUMSER(s)

Eric Sven Ristad and Robert C. Berwick NSF-8552543-DCR
N00014-85-K-0124

-.' OPWING ORGANIZATION NAME ANO ADDRESS to. PlOGRAM ELEMENT DrlJE-. TASK

Ln Artificial intelligence Laboratory 
AREA IIORK UIT NUMBERS

545 Technology Square

Cambridge, MA 02139
ONTROL.LING orliCE NAME ANO ADORESS II. REPORT DATE

Advanced Research Projects Agency November 1988
1400 Wilson Blvd. I. NUMBER OF PAGES

Arlington, VA 22209 23

~ 4ONITORING AGENCY NAME 4 AODRESS(i/ dlileretl Irom Conreolllnd Office) IS. SECURITY CLASS. (01 fh1e report)

Office of Naval Research UNCLASSIFIED
Information Systems

Arlington, VA 22217 Is. OECLASS'FICATION/OOw,,GRAOING

161 DISTRIBUTION STATEMENT (of this Report) SHDL ks"

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of tNe &bfroct intred in Mock 20, II difer.t. Item RMoeft) -

Is. SUPPLEMENTARY NOTES

None

It. KEY WORDS (Conllnue an reverie side II ne OOssa ed id ntif by block number)

Natural language Computational complexity
agreement performance

ambiguity compeLence

20. ABSTRACT (Continue -n reerie side It 1e1el7MY eud Idenuify by block numuer)

Abstract: We argue that the modern computer science technique of computa-
tional complexity analysis can provide powerful insights into the algorithm-neutral
analysis of information-processing tasks. In particular, we show that a simple,
theory-neutral linguistic model of syntactic agreement and lexical ambiguity demon-
strates that natural language parsing may be computationally intractable, extend-
ing the classic work of Chomsky and Miller (1963). Significantly, we show that

(continued on back)

DID A 2 1473 EDITIOM or I NOV ss IS OBSOLETE UNCLASSIFIED
SSN @:CLSFITO H0 I SECURITY CLASSIFICATION OF TNiS PlAGE (l~i. Data Sulrere

I~, - mm mm m m m l m



Block 20 continued:

it may be syntactic features rather than complex rules that can cause this diffi-
culty. Informally, human languages and the computationally intractable satisfiabil-
ity problem (SAT) share two costly computational mechanisms: both enforce agree-
ment among terminal symbols across unbounded distances and both allow terminal
symbol ambiguity. In natural languages, lexical elements may be required to agree
(or disagree) on such features as person, number, and gender (e.g., subject/verb
agreement in English); in SAT, agreement ensures the consistency of variable truth
assignments. Lexical ambiguity can appear freely in natural language utterances
(can may be a noun, verb, or auxiliary), while a variable in a SAT formula may be
either true or false. When coupled with a deterministic performance model, this
complexity result explains a subtle psycholinguistic distinction between discover.
ing and verifying the grammaticality of an utterance. Finally, the applicability
of computational complexity analysis to other cognitive faculties such as vision is
discussed.



'N /

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A..M No. 1178 November, 1988

Computational Consequences of Agreement and Ambiguity
In Natural Language

Eric Sven Ristad
Robert C. Berwick

Abstract: We argue that the modern computer science technique of computa-
tional complexity analysis can provide powerful insights into the algorithm-neutral
analysis of information-processing tasks. In particular, we show that a simple,
theory-neutral linguistic model of syntactic agreement and lexical ambiguity demon-
strates that natural language parsing may be computationally intractable, extend-
ing the classic work of Chomsky and Miller (1963). Significantly, we show that
it may be syntactic features rather than complex rules that can cause this diffi-
culty. Informally, human languages and the computationally intractable satisfiabil-
ity problem (SAT) share two costly computational mechanisms: both enforce agree-
ment among terminal symbols across unbounded distances and both allow terminal
symbol ambiguity. In natural languages, lexical elements may be required to agree
(or disagree) on such features as person, number, and gender (e.g., subiect/verb
agreement in English); in SAT, agreement ensures the consistency of variable truth
assignments. ,Lexical ambiguity can appear freely in natural language utterances
(can may be a noun, verb, or auxiliary), while a variable in a SAT formula may be
either true or false. When coupled with a deterministic performance model, this
complexity result explains a subtle psycholinguistic distinction between discover-
ing and verifyng the grammaticality of an utterance. Finally, the applicability
of computational complexity analysis to other cognitive faculties such as vision is
discussed.

©Massachusetts Institute of Technology, 1988

! -------.r--

.. .. "0 e



Computation, agreement, and ambiguity

1 Introduction

What is language? On one account, it is our ability to pair sound and
meaning, ultimately, an information-processing task. In this paper, we argue
that modem computational complexity theory can provide powerful insights
into the structure of this problem by providing an algorithm-neutral analysis
of information-processing structure.

Specifically we show two things. First, contrary to what is commonly
assumed, most, perhaps all, natural languages are not easy to parse: some
grammatical sentences are too complex to be understood by person or ma-
chine. Second, computational complexity theory's distinction between the
difficulty of finding a solution and verifying a solution has a precise ana-
log in the domain of natural language processing. In brief, we demonstrate
formally that sentences combining syntactic agreement with syntactically
ambiguous words can quickly become too difficult to parse, although their
well-formedness may be easily verified once a paraphrased "solution" is pro-
vided. Since possibly all natural languages exhibit ambiguity and agreement
such as subject-verb agreement and noun/verb homophones like block in
English (see section 4), this result provides a robust, modern counterpart
to Miller and Chomsky's classic distinction between abstract knowledge of
language-linguistic competence-and how that knowledge is put to use-
performance. Our result moves beyond Miller and Chomsky's in four ways:
its application of computational complexity theory; its formal specification
of the syntactic phenomena of agreement and ambiguity as a precise model
that we call agreement grammars; its prediction of a specific class of sen-
tences that are difficult to analyze but easy to check for wel-formedness
in retrospect, as a consequence of a sentence processor's purely determin-
istic operation rather than simply its finite characterization; and its broad
applicability to most, perhaps all, natural languages.

The remainder of this paper is organized as follows. Section 2 outlines
our approach to applying complexity theory in the language processing do-
main, reviewing the essential terminology of computational complexity the-
ory that will be used in the sequel. Section 3 formalizes the purely syntactic
phenomena of agreement and ambiguity in terms of agreement grammars. It
then outlines a proof that any natural language containing syntactically am-
biguous elements and agreement constraints will contain sentences that are
computationally intractable to parse. Section 4 diecusses the implications



Computation, agreement, and ambiguity 2

of this result, indicating how the distinction between solution and verifica-
tion is reflected in human sentence processing. An appendix provides formal
details of our proofs.

2 Complexity Theory and Psychological Models

Following Marn (1980), we assume the scientific explanation of any complex
biological information-processing system demands at least three distinct the-
oretical levels: (1) a computational theory, explaining what is computed and
why, including algorithm-neutral representations for the input and output
of the process; (2) an algorithmic theory that can account for the transfor-
mation of input to output; and (3) a (hardware) implementation theory, or
the device in which the representation and algorithm are physically real-
ized. Accordingly, the study of linguistic knowledge divides into the study
of competence and performance. A theory of competence corresponds to
Marr's topmost level of computational theory, explaining what information
structures are computed and why, while abstracting away from algorith-
mic details, memory limitations, shifts of attention or interest, and errors.
Marn's remaining levels belong to the theory of performance, that propose a
representation, algorithm, implementation triple to account for actual lan-
guage use.

Once we understand the topmost of Marr's levels-the computational
theory of an information-processing problem-we can understand more about
the other levels as well

Although algorithms and mechanisms are empirically more ac-
cessible, it is the top level, the level of computational theory,
which is critically important from an information-processing point
of view. The reason for this is that the nature of the computa-
tions that underlie perception depends more upon the computa-
tional problems that have to be solved than upon the particular
hardware in which their solutions are implemented. To phrase
the matter another way, an algorithm is likely to be understood
more readily by understanding the nature of the problem being
solved than by examining the mechanism (and the hardware) in
which it is embodied. (Mar, 1980, p. 27)



Computation, agreement, and ambiguity 3

What then is the role of complexity theory in scientific explanation?
Computational complexity theory measures the intrinsic difficulty of solving
an (information-processing) problem no matter how its solution is obtained,
for example, the problem of arranging a list of n names into alphabetic order.
Inherently then, complexity theory studies problem structure: it classifies
problems according to the amount of computational resources (for example,
time or space) needed to solve them on some abstract computer model,
typically a deterministic Turing machine. Complexity classifications are
invariant across a wide range of primitive machine models, all choices of
representation, algorithm, and actual implementation, and even the resource
measure itself.

It is important to see how powerful this invariance is. Any change in
the problem representation that preserves the essential features of the orig-
inal problem (preserving solutions to the original problem, in effect, its de-
scriptive adequacy) can have no effect on its complexity classification. The
robustness of these classifications makes complexity theory ideally suited
for studying cognition: while we do know something about the abstract
problems the brain solves, we do not know much about the representations,
algorithms, or hardware involved. "If we believe that the aim of information-
processing studies is to formulate and understand particular information-
processing problems, then the structure of those problems is central .
(Marr, 1980, p. 347).

The two complexity classes we distinguish below are P and A/P. P
is the natural and important class of problems solvable in deterministic
Polynomial time, that is, on a deterministic Turing machine in time nj for
some integer j, where n denotes the size of the problem to be solved.' P
is considered to be the class of problems that can be solved efficiently. For
example, sorting takes n. log n time in the worst case using a variety of
algorithms, and therefore is efficiently solvable.

Ai? is the class of all problems solvable in Aiondeterministic Polynomial
time in the worst case. Informally, a problem is in A/P if one can guess
an answer to the problem and then verify its correctness in polynomial
time. Such problems have no known polynomial-time (efficient) solution
algorithms. For example, the problem of deciding whether a whole number
i is composite is in A/P because it can be solved by guessing a pair of

'Problems must be encoded in a "reasonable" way for a size measure to make sense;
for discussion, see Garey and Johnson (1979).



Computation, agreement, and ambiguity 4

potential divisors, and then quickly checking if their product equals i.

A problem T is NP-hard if it is at least as hard computationally as
any problem in the class .A(: if we had a subroutine that solved T in
polynomial time, then we could write a program to solve any problem in

i'P in polynomial time (essentially by efficiently transforming the problem
in KP to T and then solving T with the fast subroutine: the appendix gives
a more detailed account of how this procedure, known as problem reduction,
works). Note that T need not be in A? to be NP-hard. A problem is
NP-complete if it is both in K? and NP-hard.

NP-complete problems can be solv2d only by methods too slow for even
the fastest computers. 2 Since it is widely believed, though not yet proved,
that no faster methods of solution can ever be found for these problems, NP-
complete problems are considered computationally intractable. A famous
NP-complete problem is the traveling salesman problem: to find the shortest
route for a traveling salesman who must visit a number of cities and return
to the city started at. For additional details, the reader may refer to Garey
and Johnson (1979); Lewis and Papadimitriou (1978); or Barton, Berwick,
and Ristad (1987). This last work explores further the relationship between
computational complexity and natural language.

3 Modeling agreement and ambiguity

Having reviewed the basic terminology of complexity theory, we now turn
to problem of formally modeling agreement and ambiguity in natural lan-
guages.

Syntactic agreement and ambiguity are widespread in human languages.
Agreement can be morphological (word based) or structural, and can hold
across unbounded distances and among unlimited sets of elements. This
is quite easy to demonstrate. For example, in nearly all languages, predi-
cates must agree with their arguments. In English, morphological agreement
includes subject-verb agreement on person, number, gender, animacy, hu-
maity, abstractness, quantity, and other features. Agreement occurs at the
intra-morpheme level in some languages, for example, in Turkish where a

2 However, some NP-complete problems have good awecage-time behavior, that is, the
instances that occur most often can be efficiently solved. We discuss such behavior in
relation to our NP-completeness result below in section 4.



Computation, agreement, and ambiguity 5

suffix ending such as Ui forces agreement in vowel qualities with preceding
vowels; this phenomenon occurs widely in such diverse languages as Finnish,
Arabic, Hebrew, and the Australian language Warlpiri.

Case marking is another form of agreement that surfaces both morpho-
logically and syntactically in natural languages. Noun forms such as epi-
thets, pronouns, and anaphora may be required to agree or disagree with
other noun forms in person, number, gender, and so forth, as in, Reagan,
the fool, believed he could appoint justices himself. Typically such agreement
can occur over an unbounded number of words or phrases. In short, syntac-
tic agreement is a widespread phenomenon of natural languages generally,
perhaps found in all natural languages.

Ambiguity is equally common in natural languages. Syntactic homonyms
are typical: in English, the word block may be a noun or a verb. Ambiguity
in quantifier scope and reference are equally common, for example, the dual
meaning of Everyone loves someone.

Descriptively adequate linguistic theories must therefore describe these
two phenomena, and, in fact, all major linguistic theories do so, using three
devices: (1) distinctive features to represent the dimensions of agreement;
(2) an agreement enforcement mechanism; and (3) provision for lexical and
structural (syntactic) ambiguity.

While different theories work out the details of these three devices in dif-
ferent ways, one can abstract away from these variations in order to model
just agreement and ambiguity and study their computational complexity.
We introduce agreement grammars here as a simple formal linguistic model
with exactly these three devices. Agreement grammars are not natural lan-
guage grammars. For one thing, agreement grammars are too simple to
completely model any natural language. They can also generate infinitely
many unnatural languages, such as E*, or any finite, regular, or context-free
language. But while our results apply only to this simplified formal model
of agreement and ambiguity, it is nonetheless true that all current linguistic
theories that attempt to describe natural grammars readily embed the agree-
ment grammar problem (see Barton, Berwick, and Ristad 1987). In this re-
spect, our approach follows that of Kirousis and Papadimitriou (1985), who
study the complexity of a formal model of scene recognition known as line-
labeling. While line-labeling is not the same as scene recognition, it may be
construed as a simple formal model embedded in the full-scale problem of
scene recognition.



Computation, agreement, and ambiguity 6

We begin with an informal introduction, and follow that with a formal
specification of agreement grammars.

3.1 Defining agreement grammars

Following conventional notation, we first recall that a context-free grammar
G is a 4-tuple,

G = (VN, VT, P,S)

where VN is a finite set of nonterminal symbols, VT a finite set of terminal
symbols, P a finite set of productions of the form A --+ -y, where A E VN
and 7 E (VN U VT)*, and S is a distinguished start symbol. If P contains a
production A -+ -, then for any a,,3 E (Vn U VT)*, we write aA 3 a-o
and say that aA3 derives a-f/3 with respect to G. We let :; be the reflexive
transitive closure of =*, dropping the clause "with respect to G" where it is
understood from context. The language L(G) generated by a context-free
grammar is the set of all strictly terminal strings that can be derived from
the start symbol with respect to G, that is,

L(G) = Im:x E V; and S = }

We extend context-free grammars to obtain agreement grammars (AGs)
by adding nonterminals that are sets of features and by imposing an agree-
ment condition on the derivation relation.

A feature is a (feature-name feature-value] pair. For example, [PER 1)
is a possible feature, denoting first-person. Some features may be designated
agreement features, and required to match other features (see below). For
instance, an AG nonterminal labeling the first person pronoun I could be
written I [CAT N3, [PLU -J, [PER i }, while the singular verb sleeps could
be labeled with the AG nonterminal features { [CAT V3, [PLU -J, [PER 3J }.

More formally, we define the set of nonterminals in the following way.
The set of nonterminals in an agreement grammar is characterized by a
specification (F, A, p) where F is a finite set of feature names and A is a
finite set of feature values. p is a function from feature names to permissible
feature values; that is, p : F --+ 2 A . (F, A, p) specifies a finite set VN
of nonterminals, where a nonterminal may also be thought of as a partial
function from feature-names to feature-values:

VN = {C E A(F): Vf E DO(C)[C(f) E p(f)]}



Computation, agreement, and ambiguity 7

Here y(X) is the set of all partial functions from X to Y. DON(C) is the
domain of C, that is the set {z : 3y[(z, Y) E CE}. A category C' eztends a
category C (written C' D C) if and only if Vf E DO(C), [C'(f) = C(f)],
that is, C' is a superset of C. For example, the category { [PER 1J, [FiM 1) }
extends the category { [PER 1] }.

An agreement grammar (AG) is a 5-tuple,

G = ((F,A,p),VT, FA,P,S)

whose first element specifies a set VN of syntactic categories and where VT
is a finite terminal alphabet. FA is the set of agreement feature names,
FA C F. S is the distinguished starting symbol, S E VN. P is a finite set of
the usual context-free productions, each member taking one of the forms:

1. C -- a, where C E VN and a E VT,

2. Co -- C 1 ... Cn, where each Ci E ]N.

No so-called null productions or epsilon transitions are permitted: each

production must have at least one non-null element on its righthand s.de.

To complete our definition, we modify the derives relation to incorporate
agreement. We say that a production CO -# C ... Cn eztends a production
Co -+ C1 ... C, if and only if C! extends Ci for every i and the mother's
agreement features appear on every daughter:

1. Vi, 0 5 i < n, [Ci' Ci], and

2. Vf E (DO(C ) n FA),Vi, 1 < i < n, [(f E DO(C )) A (C:(f) = Ce(f))]

The last condition (the agreement convention) ensures that all agreement
features on the mother are also found on all daughters.

We may now define the language generated by an agreement grammar.
If P contains a production A --* 7 with an extension A' --# 7', then for any
a, ,3 E (VN U VT)*, we write aA'3 = a7'o3. Let =, be the reflexive transitive
closure of => in the given grammar G. The language L(G) generated by G
contains all terminal strings that can be derived from any extension of the
start category:

L(G) = { z z E V; and 3S', [S' Q 5, and S' x]}



Computation, agreement, and ambiguity 8

A Natural Language Example. The following artificial agreement gram-
mar G, models subject-verb agreement for person and number in English.

1. G, includes the set F of feature names {CAT, PLU, PER} and the function
p defined by:

p(CAT) = {s, VP,NP, V,i}
p(PER) = {1,2,3}
p(PLU) = {+,-1

The start category S is {[CAT S3}, ard the set of agreement fea-
ture names FA = {PER, PLU}. The feature CAT encodes the syntactic
category of the nonterminal (sentence, noun phrase, and so f,,rth).
PER encodes person (first, secord, or third), and PLU encodes number
([PLU +) is plural, [PLU -] is singular).

2. The terminal vocabulary of G, is

VT = {I, men, John, sleep, sleeps}.

3. G1 contains the following 9 productions:

([CAT S1} -- {CCAT SPI} {CAT VP} 
{ [CAT VP} - { [CAT VJ}
{ [CAT P} - { e[CAT 1}

{[CAT IPJ, [PLU -J, [PER i} -1 1
{ [CAT Ni, EPLU +J} - men

{[CAT iP], [PLU -1, [PER 3) } - John
{[CAT V3, EPLU +)} -* sleep

{ [CAT VJ, PLU -], [PER 1)} -- sleep
{CeAT V, PLU -], [PER 3)) -} sleeps

The sample grammar generates exactly the following sentences:

a. I sleep (= {[CAT SJ, [PER I], [PLU -J})
b. men sleep (= ([CAT S], [PLU +})
c. John sleeps (= ([CAT S], [PER 3), [PLU -]})

We next turn to the computational complexity of recognizing sentences
generated by an arbitrary agreement grammar.



Computi 'ion, agreement, and ambiguity 9

3.2 The computational comple;Jty of agreement grammar
recognition

Given an arbitrary agreement grammar, how hard is it to parse using the
agreement features of that grammar? Computational complexity theory
gives us a precise answer to this question. We may state the recognition
problem for agreement graw-mars as follows:

Given an arbitrary Agreement grammar AG and a string a, is z E
L(AG)?

This problem is NP-complete. Intuitively, feature agreement lets us "sim-
ulate" the problem of finding out whether there exists an assignment of
truth-values to variables that satisfies an arbitrary Boolean formula in 3-
:onjunctive normal form, that is, a formula such as this one

(z V y V 7) A (y V z V w)

where there are exactly three dijoined variables per clause, and each clause
is conjoined with the next. This problem is called 3SAT (for "three satisfia-
bility"); the appendix provides a formal definition of this problem.' Feature
agreement simulates the assignment of truth-values: if y is given the value
true in one clause, then it must be true in all other clauses (and y must be
false). Syntactic category ambiguity simulates the fact that we must "guess"
whether y is to have the value true or false, just as we must sometimes guess
whether block is a noun or a verb. Finally, ordinary context-free produc-
tions may be used to guarantee that there is at leaqt one true variable per
clause, as is demanded for there to be a satisfying truth-assignment. This
simulation, formally called a reduction, establishes that AG recognition is
NP-hard. To establish inclusion in AK? we use the impossibility of null-
transitions in AGs to derive a polynomial bound on the length of a shortest
derivation. Given this, it is easy to show that a nondeterministic program
can "guess" membership of z in L(AG) in polynomial time. The proof fol-
lows that in Barton, Berwick, and Ristad (1987) and is spelled out in the
appendix.

It is important to note that this complexity result is a function of both

input sentence length and grammar size. At first glance, this might seem
3The possibility that the agreement grammar recognition problem might Le NP-

complete and a general idea of how to prove it arose out of a discussion between the
authors and E. Barton.



Computation, agreement, and ambiguity 10

unreasonable. A child learning a language might be able to discover a more
compact, highly efficient grammar to use. Similarly, people appear to use
one grammar to process sentences, not a family of grammars. If the gram-
mar were fixed, then it would not be part of the input to the problem, and
a polynomial time recognition algorithm might exist.

But factoring out grammar size has many problems, as discussed in
Barton, Berwick, and Ristad (1987). To summarize these: (1) Complexity
analysis should consider all relevant inputs; grammar size is an important,
direct component of recognition algorithms, and therefore it is wrong to
ignore this dominant element of recognition time. This is especially true
for natural languages, where grammar size is much larger than expected
sentence length (typically by a factor of 103 or more). (2) Known pre-
processing steps for agreement grammars all fail, because they expand the
grammar size exponentially, which acts as a huge constant factor of 2

IG

multiplying the recognition time. For example, a full grammar with 10,000
rules could require time 21' • n3 to parse-polynomial time in a strict
sense, but impossibly long in practical terms.

What this NP-completeness result means is that there is no known algo-
rithm for determining membership in the language of an arbitrary agreement
grammar that does not in effect exhaustively check an exponential number
of possible feature combinations. Further, there is no known reasonable rep-
resentational recasting of the AG recognition problem that would do better.
Interestingly, this NP-completeness result does not rely on the context-free
power of the AG model. The agreement grammar used in the reduction gen-
erates a regular language, and essentially the same reduction would apply
to an agreement grammar whose language was finite. The reduction relies
only on the combinatorial possibilities that arise from nonlocal agreement
and ambiguity.

Put another way, natural languages that incorporate the minimal ma-
chinery of agreement and ambiguity are inherently asymptotically intractable.
This intractability arises from the interaction of agreement and ambiguity.
Informally, human languages and the NP-complete satisfiability problem
(SAT) share two costly computational mechanisms: both enforce agreement
among terminal symbols across unbounded distances and both allow ter-
minal symbol ambiguity. In natural language, lexical elements may be re-
quired to agree (or disagree) on such features as person, number, gender,
case, count, category, reference, thematic role, tense, and abstractness (sub-



Computation, agreement, and ambiguity 11

ject/verb agreement in English, for example); in SAT, agreement ensures
the consistency of variable truth assignments. Lexical ambigui.y can ap-
pear freely in natural language utterances (is can a noun, verb, or auxiliary
verb?), while a variable in a SAT formula may be either true or false. Thus,
the linguistic mechanisms for agreement and ambiguity are exactly those
needed to simulate Satisfiability-any linguistic theory that uses them, as
any descriptively adequate theory must, will be computationally intractable.

4 Intractability and linguistic performance

Having established the inherent computational intractability of descriptively
adequate linguistic theories, we turn next to the implications of this result
for models of human sentence processing. We show that the fundamental
difference between finding and verifying a result surfaces in the agreement
grammar case, and in the associated natural language examples.

Following Miller and Chomsky (1963), let us imagine a linguistic per-
formance model M (a "parser") that is fundamentally deterministic and
assigns structural descriptions to utterances in real time. Refining their dis-
cussion, by "deterministic" we mean that M may have limited parallelism
and cannot guess correct answers. This machine model is thought to in-
dude all physically realizable computing machines, from the fastest digital
computers to the brain.

A consequence of the NP-completeness results of the previous section is
that M will not be able to analyze certain constructions involving both ambi-
guity and long-distance agreement. This result does not dispute that short,
unambiguous, or structurally simple utterances can be processed efficiently.4

More importantly, given the apparent speed of ordinary language use, the
result suggests that actual biological recognizers may be both fast and oc-
casionally inaccurate. M will, however, be able to efficiently "verify" (in
a sense to be clarified below) many of the constructions it fails to analyze.
The choice of a deterministic performance model, when coupled with the
AG model of competence, indicates that some performance limitations will
arise out of the deterministic nature of processing (see Berwick and Wein-
berg, 1982) rather than from the finite nature of human cognitive capacity

4Thus, the fact that many NP-complete problems have good "average time" solutions
does not contradict our result. In fact, given the preponderant distribution of short
utterances, it reinforces our result, as the discussion below makes clear.



Computation, agreement, and ambiguity 12

(see Miller and Chomsky, 1963).

As evidence of such a performance limtation, consider examples that
exhibit excessive lexical and structural ambiguity, as in sentence (1) below,
where buffalo can be one or many shaggy beasts, a city, or a transitive
verb that means fool. The sentences in (2) demonstrate the same effect
with the elaborate agreement processes found in consecutive constituent
coordination, discontinuous constituent coordination, rightward movement
out of coordinate structures, and gapping. Sentence (1) has an array of
possible interpretations, ranging from the simple interpretation suggested by
the parallel sentence "Boston buffalo fool Boston buffalo" to more elaborate
ones with relative clauses, for example "[Buffalo that buffalo fool] can fool
buffalo."

5

buffalo buffalo buffalo buffalo buffalo (1)

a. John owned and then sold hundreds of late model cars
to us that he waxed all the time.

b. John liked and wanted to tease Sue and Bill, Mary.
c. John owned and then sold hundreds of late model cars (2)

to us and Bill, trucks.
d. John owned and then sold hundreds of late model cars

to us and to Bill, trucks.

Examples combining the two phenomena become even worse: Buffalo
buffalo buffalo and buffalo buffalo buffalo of buffalo buffalo to buffalo buffalo
buffalo buffalo and buffalo, buffalo buffalo.

Linguistic agreement and ambiguity may cause intractability in other
languages as well. Free word order languages such as Warlpiri, a central
Australian aborigine language, have special morphology for verbs and for
nominal arguments that make sentences such as the buffalo examples easy
to understand when they are directly translated. But the morphological
processes in these languages typically allow other highly ambiguous con-
structions that are difficult to understand. For example, Warlpiri fails to
distinguish adjectives and nouns either morphologically or configurationally
(as in English), making the direct translation of such trivial English sen-
tences as John flushed the Air Force space shuttle toilet computationally

"Equlvalent sentencts can be constructed out of any word whose plural noun form is
morphologically identical to its plural verb form: police police police police police ... , and
french french french french french, etc.



Computation, agreement, and ambiguity 13

analogous to the intractable "buffalo" sentences of English. We conclude
that there is, in fact, a class of grammatical sentences whose recognition
complexity can grow exponentially faster than their length, and therefore,
contrary to common belief, natural language may not be efficiently parsable
in general.

Significantly, the preceding natural language examples have the compu-
tational character of NP-complete problems: solutions may be hard to find,
but they are easy to verify. This is a nontrivial result because there is no
a priori reason why solutions to a problem should be easy verify. Thus, if
full natural language understanding was harder than NP-complete, as has
been suggested by Chomsky (1980), then some grammatical sentences could
never be understood, even with extensive priming and prompting.

The reader's first attempt to understand the buffalo sentence is likely
to fail completely. However, it is generally easy to check the paraphrased
"solution." The curious nature of this phenomenon confirms the predictions
made by the model M, since it is a property of a deterministic machine
operating under polynomial time constraints that it will be unable to find
an analysis of the agreement-type sentences. On the other hand, M should
be able to verify an agreement sentence, since such NP-hard problems are,
by definition, verifiable in polynomial time by a deterministic machine. This
result also argues that neither agreement nor ambiguity should be bounded
by the competence model.

An explanation of the psycholinguistic dichotomy between solving and
verifying relies critically on the competence/performance distinction. The
poasibility of understanding (verifying) the utterances at all is explained by
a competence theory that does not bound agreement or ambiguity. On the
other hand, the difficulty of understanding (solving) the utterances is best
explained by the deterministic nature of the performance model.

Agreemert and ambiguity, if permitted to operate without bound in
the speaker, will quickly generate utterances that exceed the (deterministic)
perceptual capabilities of hearers. These sentences, being too difficult for
the hearer to understand, will not be used due to the fidelity criterion of
communication systems (see CGomsky and Miller, 1963, p. 273). The fidelity
criterion states that the receiver establishes the criterion of acceptability of
a communication system: if the receiver cannot process a signal, then the
fidelity of the communication channel is wasted. Simply put, unacceptably
ambiguous sentences, being difficult for the hearer, are not used in practice,



Computation, agreement, and ambiguity 14

"just as many other proliferations of syntactic devices that produce well-
formed sentences will never actually be found," (Miller and Chomsky, 1963,
p. 471).

Nearly all utterances evince both agreement processes and ambiguity,
to varying degrees. Therefore, there is no reason to expect that occasional
unacceptability introduced by excessive agreement and ambiguity will cause
those processes to disappear from language over the course of time. In fact,
all known natural languages employ these mechanisms. It would be rea-
sonable to expect, however, that natural language processing system might
develop techniques to efficiently process the "easy" cases and approximately
process the "hard" ones.

It remains to develop a complete theory of approximate processing for
hard problems, but complexity theory again suggests some possible an-
swers. One approach is what we advance above: hard sentences are not
in fact solved, but only verified for grammaticality upon paraphrase. An-
other approach is to simply restrict the domain of problems solved: only
short agreement sentences will be analyzed, and analysis of those exceeding
a set resource limit will be aborted.

More generally, on this analysis, whenever the computational cost of a
task matches its observed cognitive cost, we know that scientific explanation
of the task should occur primarily in a theory of competence and that the
performance theory is likely to be straightforward: that is, deterministic
and faithful. But whenever the inherent computational cost differs from
measured cognitive cost, complexity theory yields specific insight into the
performance theory: what needs to be explained at that level and the form
such an explanation might take.

If complexity theory classifies a cognitive problem as intractable, yet
humans appear to solve that problem efficiently, this suggests that the per-
formance algorithm restricts its input domain or solves costly instances only
approximately (as in simulated annealing; see Kirkpatrick, Gelatt, and Vec-
chi, 1983 for further discussion), or perhaps aided by parallel hardware spe-
dally designed for the cognitive problem at hand.

On the other hand, a problem could be easy in principle, yet impossi-
ble for people to solve. Then the performance algorithm might be simple-
minded, inefficient, or quite restricted (as with the "no reentrant procedures"
constraint of an early performance model), or the mental hardware might



Computation, agreement, and ambiguity 15

limit memory use or processing time.

To take a simple example from another cognitive domain, Kirousis and
Papadimitriou (1985) consider the complexity of the historically important
line-labeling problem in machine vision. They prove that the line-labeling
problem and the more general scene recognition problem are NP-complete,
and likely to be intractable. Given the apparent speed with which humans
recognize scenes, and hence the surprising nature of their result, they suggest
that computationally difficult scenes are scarce in practice, or that real-world
hints (for example, surface texture and assorted depth dues) might simplify
the real-world scene recognition problem.

In either situation then, the complexity analysis of information-processing
tasks can lead to significant conclusions about linguistic performance be-
cause complexity theory makes strong empirical predictions. Agreement
grammars provide a linguistically and algorithmically neutral model for
agreement and ambiguity in natural languages. Agreement grammar recog-
nition is theoretically intractable. We have also observed that the buffalo-
type sentences are difficult for humans to process. In order to explain this
apparent match between predicted intractability and observed cognitive dif-
ficulty, we are led to postulate a deterministic processing model for English,
and perhaps all natural languages.

5 Acknowledgments

We would like to thank G. Edward Barton for discussions that inspired this
work, and anonymous reviewers for the Journal of Mathematical Psychology
for comments that greatly improved it. (This paper appears in Vol.33, No.4,
pp.379-396 of that journal.) It describes research done at the Artificial In-
telligence Laboratory at the Massachusetts Institute of Technology. Support
for this research has been provided by an IBM Fellowship to Eric Sven Ris-
tad and a National Science Foundation Grant No. DCR-8552543 under a
Presidential Young Investigator Award to Professor Robert C. Berwick, and
National Science Foundation Grant No. IRI-8511531.

6 References



Computation, agreement, and ambiguity 16

BARTON, E., BERWICK, R., & RiSTAD, E. (1987). Computational Com-
plezity and Natural Language. Cambridge, MA: MIT Press.

BERWICK, R.. & WEINBERG, A. (1982). The Grammatical Basis of Lin-
guistic Performance. Cambridge, MA: MIT Press.

CHOMSKY, N. (1980). Rules and Representations. New York: Columbia
University Press.

CHOMSKY, N., & MILLER, G. (1963). Introduction to the formal analysis
of natural languages. In R.D. Luce, R.R. Bush, & E. Galanter (Eds.),
Handbook of Mathematical Psychology, vol. II, (pp. 269-322). New York:
'ohn Wiley and Sons.

GAREY, M., & JOHNSON, D. (1979). Computers and Intractability. San
Francisco: W.H. Freeman.

KIaousIs, L. & PAPADIMITRIOU, C. (1985). The complexity of recognizing
polyhedral scenes. In Proceedings of the 26th Annual IEEE Symposium
on the Foundations of Computer Science, (pp. 175-185). Boston, MA:
IEEE Society.

KIRKPATRICK, S., GELATT, C.D. JR., & VECCHI, M.P. (1983). Opti-
mization by simlated annealing. Science, 220, 671-680.

MARR, D. (1980). Vision. San Francisco: W.H. Freeman.

MILLER, G.A., & CHOMSKY, N. (1963). Finitary models of language users.
In R.D. Luce, R.R. Bush, & E. Galanter (Eds.), Handbook of Mathe-
matical Psychology, vol. II, (pp. 419-492). New York: John Wiley and
Sons.



Computation, agreement, and ambiguity 17

A Formal Results

In this appendix we give additional details on the proof technique of reduc-
tion, followed by a formal proof of the NP-completeness result sketched in
the main text.

A.1 Reduction as a proof technique

Complexity classifications are established with the proof technique of reduc-
tion. A reduction converts instances of a problem T of known complexity
into instances of a problem S whose complexity we wish to determine. The
reduction operates in polynomial time. Therefore, if we had a polynomial
time algorithm for solving S, then we could also solve T in polynomial time,
simply by converting instances of T into S. (This follows because the compo-
sition of two polynomial time functions is also polynomial time.) Formally, if
we choose T to be NP-complete, then the polynomial time reduction shows
that S is at least as hard as T, or NP-hard. If we were also to prove that S
was in A!?, then S would be NP-complete.

In this case, the known NP-complete problem T that we will use is 3SAT,
and the problem S of unknown complexity is AG-Recognition. Therefore,
the proof will reduce instances of 3SAT (a 3-conjunctive normal form or
3-CNF Boolean formula F) into instances of AG-Recognition (an AG G and
input string z). The 3-Satisfiability problem (3SAT) is to determine, given
a Boolean expression in 3-CNF, whether the formula is satisfiable. 3SAT is
N P-complete. An example of a satisfiable 3-CNF Boolean formula with five
clauses is:

(a V b V c) A (f V d V e) A (e V 3 V E) A (bY c V d) A (W V V -)

A Boolean ezpression is an expression composed of variables (e.g. z), paren-
theses, and the logical operators V (OR), A (AND), and negation. Negation
is represented as a horizontal bar over the negated expression (e.g. 7 is the
negation of the variable z). A literal is a variable or the negation of a vari-
able. Variables may have the values 0 (false) and 1 (true), as do expressions.
An expression is satisfiable if there is some assignment of O's and l's to the
variables that gives the expression the value 1.

A Boolean expression is in conjunctive normal form (CNF) if it is of the
form El A E2 A..- A E, and each clause Ei is of the form aj1 V ai2 V ... V ,,



Computation, agreement, and ambiguity 18

where each acj is a literal - either a variable z or a negated variable T. An
expression is in 3-CNF if each clause in the CNF expression contains exactly
three distinct literals.

A.2 AG Recognition is NP-complete

Lemma A.1 Let ((p,..., (p) be a shortest leftmost derivation of pk from
'po in an agreement grammar G containing at least one branching production8

If k > IP1, where P is the set of productions in G, then IWkl > I OI.

Proof. In the step (pi => (pi+,, where (pi = aA'p and (pi+l = acr'3 for
a E V9, 03 E (VT U K)*, one of the following cases must hold:

1. The production A --, - with extension A' -- -y is nonbranching
(1-7 = 1). In the worst case, we could cycle through every possible
nonbranching production (without using a branching production), af-
ter which we would begin to reuse them. Any extension of a production
that has already been used in this run of nonbranching productions
could have been guessed previously, and the length of the shortest
nonbranching run must be less than IPJ.

2. The production A --+ 7 with extension A' - 7'is branching (17I > 1).
Then Ikoi > I p+l.

A total of at most n- I branching productions derives an utterance of length
n, because there are no null-transitions in an agreement grammar. Each
branching production can be separated from the closest other branching
production in the derivation by a run of at most IGf nonbranching produc-
tions, and the shortest derivation of z will be of length B(IGI • IzI). (As is
conventional in computer science, the expression O(z) stands for "exactly
X".)

Theorem 1 Agreement grammar recognition is in A/P.

'If the agreement grammar G does not contain a branching production, then L(G)
contains only strings of length one and all shortest derivations are shorter than JPJ: mem-
bership for such a grammar is clearly in A/M.



Computation, agreement, and ambiguity 19

Proof. On input agreement grammar G and input string z E VT *, guess a
derivation of z in nondeterministic polynomial time as follows.7

1. Guess an extension S' of S, and let S' be the derivation string.

2. For a derivation string aA'O, where a E V ,,3 E (VT U K)*, guess a
production A --+ 7 and extension A' -- 7' of it. Let a7',3 be the new
derivation string.

3. If aT'o = z, accept.

4. If lat'31 > lI:, reject.

5. Loop to step 2 (at most IGI. zJ times).

Every loop of the nondeterministic algorithm performs one step in the
derivation. By lemma A.1, the shortest derivation of z is at most of length

0(IGI. Iz), so we need to loop through the algorithm at most that many
times. Guessing an extension of a category may be performed in time 9(IFI),
and an extension of a production may be guessed in time (IF• - JP). This
nondetermnistic algorithm runs in polynomial time and accepts exactly
L(G); hence AG Recognition is in A/'. []

Theorem 2 AG Recognition is NP-hard.

Proof. We reduce 3SAT to AG Recognition in polynomial time. Given a
3CNF formula f of length m using the n variables qL ... q-, we construct an
agreement grammar G! such that the string w is an element of L(G,) iff f
is satisfiable, where w is the string of formula literals in f. Gf is constructed
as follows:

1. Gf includes the set F of feature names {STAGE, LITERAL, ql,...,q, }
with values defined by the function p:

p(STAGE) = {1,...,n+3}
p(LITERAL) = f+,-l
p(qi) = {o, }

?Again, we assume G contains at least one branching production. If not, then we

should only loop as many times as there are productions, and then halt.



Computation, agreement, and ambiguity 20

The grammar will assign truth-values to the variables and check satis-
faction in n + 3 stages as synchronized by the feature STAGE. The start
category is { [STAGE 1] }.

2. At each of the first n stages, a value is chosen for one variable; because
the qi are declared as agreement features, the values that are chosen
will be maintained throughout the derivation tree. The following 2n
nonbranching rules are needed, constructed for all i, 1 < i < n.

{[STAGE i), Eq1 OJ} - {[STAGE i + 1], Eqj o}
{[STAGE fl, [qiJ} {[STAGE i+ 1), Eq i]}

Note that square brackets ([,j) delimit features, while curly brackets
({, }) delimit the sets of features that form nonterminals.

3. At stage n + 1, the grammar has guessed truth assignments for all
variables; all that remains is to use the truth assignments to generate
satisfied three-literal clauses. The following two rules generate enough
clauses to match the number of clauses in w:

{[STAGE n+1} - { [STAGEn + 2]}
{[STAGE n+]} 1 {[STAGE n+1]} {[STAGE n+2]}

4. At stage n + 2, the grammr generates satisfied three-literal clauses-
clauses containing at least one true literal. Let CO and C1 be the
following categories:

Co = {[STAGE n + 3], [LITERAL -1}
C, = {[STAGE n + 3], [LITERAL +]}

Then the following 7 ternary-branching rules are needed; any set of
three literals makes the clause true, provided at least one literal is
true:

{[STAGE n + 2]} - Co C0 C1
{[STAGE n+2} 2 - CoC, Co
{[STAGE n +2]} , CC C
{[STAGE n +2]} --- Co C, C
{[STAGE n +J} C 1 CoC,
{[STAGEn + 2J} -. C .C Co
{[STAGEn + 2)} - C C ,C



Computation, agreement, and ambiguity 21

5. Finally, lexical insertion at stage n + 3 ties together the truth-values
chosen for the variables and the literals. For every q,, 1 < i < n, we
need the following four nonbranching rules, bringing us to a total of
6n + 9 rules:

{[STAGE n + 3), [LITERAL +I, [qj 13} -*q

{[STAGE n+3], [LITERAL -1, [q, 0]} - q
{[STAGE n + 3], [LITERAL ], qi OJ} -- i
{[STAGE n+ 33, [LITERAL -1, Eqi 1} - qi

If some extension of the start category S = [STAGE 11 can be generated,
then the formula f is satisfiable; each extension of the start category that
generates a string must encode a satisfying truth assignment. For example,
the category

{[STAGE 13, [qi 13, [q2 01,..., [qn 1}

generates 3-CNF formulas f with the satisfying truth assignment q,

1,q2 = 0,... ,q, = 1. Note that the agreement grammar constructed in the
reduction generates all satisfiable 3CNF Boolean formulas, of any length,
using n or fewer variables. ]

Figure 1 contains a sample reduction, showing the parse tree needed to
analyze a 3SAT instance recoded as an AG parsing problem. The 3SAT
instance to solve is (ul V U2 V U3) A (Ui V u2 V u3), which has the satisfying
assignment u1 = 1, u2 = 1 and u3 = 0. The corresponding input string to
be parsed is a formula of literals, UlU2U3Ulu3u3. The agreement features are
therefore {u1, u2 , U3}.



Computation, agreement, and ambiguity 22

[Start]

[u]

1 Guess variable
truth assignments

[U 1

[GENERATE-SAT-3CLAUSES]

[GENERAT tSAT-3CLAUSE[ [GENERATE.rAT-3CLAUSES[

[GENERAT -100-3CLAUSE] [GENERATE-SAT-3CLAUSE]

N[GNERAT 010- SE]

[Literal 11 [Literal 01 [Literal 0] [Literal 0] [literal 11 [literal 0]I I I I I I
1 - 2 L3 u'1 u2 u 3

Figure 1: Figure 1: A sample reduction for the agreement grammar proof, showing
a 3SAT instance recoded as an AG parsing problem. The 3SAT problem to solve
is is (u1 V U2 V us) A (VI V U2 V Us), which has the satisfying assignment ul = 1,
u2 = 1 and us = 0. The corresponding input string to be parsed is a formula
of literals, u1 %usVusua. The agreement features are therefore {ul, u2, us}. The
solution expressed at the terminal leaves of the tree is ul = (i.e., true); U -2
(true); and us = 0 (false).


